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Received 27 July 1992 

Abstract. We consider the spectral Statistics of independent electrons moving at zero temperatore 
in a weakly disordered metallic ring threaded by a magnetic flux. The analysis is based on the 
supersymmetry method involving both commuting and anticommuting variables. Besides. we 
consider an ensemble of Gaussian distributed symmetric random matrices (Gaussian onhogonal 
ensemble) which are perturbed by a small time reversal symmetry breg&g contribution. For 
energies smaller than the inverse diffusion time around the ring E,, the spectral correlation 
functions o f  both models can be represented in terms o f  supermatrix integrals of identical 
smcture. In conformity with recent numerical results, this implies that the spectral properties 
of the two models coincide. These matrix integrals are to a large extent universal, i.e. they 
depend only on two physical panmeters: the mean level spacing and a symmetry breaking 
parameter which is identified as the typical sensitivity of levels to the time reversal symmetry 
breaking perturbation. We parametrize the relevant matrix coset space o f  the nonlinearp-model 
in a novel way which is particularly convenient for treating models in the crossover between 
the two symmetry classes. As an example. we present a detailed calculation of the level-level 
correlation function. The basic formalism, however. applies quite generally and can be used for 
the investigatidn o f  different types of correlation functions and system geometries as well. 

1. Introduction and results 

At low temperatures, small disordered metals, i.e. disordered metal probes of an extension 
less than or comparable with the temperature dependent phase coherence length, display 
various quantum effects which are related to-the existence of strong correlations in their 
energy spectra. Typical examples of such phenomena are universal conductance fluctuations 
[I], or mesoscopic effects arising in the orbital magnetic susceptibility [2,3]. Perhaps the 
most remarkable feature of these spectral correlations is their universality, i.e. the degree of 
correlation between two energy levels depends on their distance o and a few macroscopic 
parameters characterizing the system but not the microscopic origin of stochasticity. 
Universal spectral fluctuations are shown by various other small stochastic quantum systems, 
such as complex nuclei, atoms or mol~ecules [4] as well. Phenomenologically, they can very 
accurately be described by representing the Hamilton operators of the respective systems 
in terms of Gaussian distributed matrix Hamiltonians [4]. The spectral properties of such 
matrix ensembles are uniquely determined by two fundamental symmetries: Unitarity and 
time reversal symmetry. As long as spin-dependent interactions are inessential (the only 
case which will be considered in this paper), it is sufficient to distinguish between two 
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cases: Time reversal invariant systems (orthogonal symmetry) described by ensembles of 
real symmetric matrices and systems of broken time reversal invariance (unitary symmetry) 
represented by Hermitian random matrices. The corresponding matrix ensembles are 
called the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble (CUE), 
respectively. Both symmetry classes display qualitatively different spectral properties. 

The relevance of these concepts to the spectral theory of disordered metallic particles 
has been conjectured a long time ago by Gor'kov and Eliashberg IS]. Depending on 
the symmetries of the scattering potential, disordered metallic systems may belong to 
any one of the three universality classes: the unitary class, the orthogonal class or the 
symplectic class which is appropriate for time reversal invariant systems with broken 
central symmetry. Some years ago, it was shown [6] that random matrix theory is 
indeed an appropriate tool for describing the spectral statistics of isolated metal probes 
on energy scales smaller than the inverse diffusion time through the system Ec: Starting 
from a microscopic model Hamiltonian, the correlation functions describing the spectral 
properties of samples belonging to each symmetry class were calculated non-perturbatively. 
The analysis was based on the supersymmetry method involving both, commuting and 
anticommuting variables. In all three cases, the results turned out to coincide exactly with the 
correlation functions describing the corresponding random matrix ensemble. Correlations 
on scales larger than E, fall beyond the scope of random matrix theory. In this regime, the 
spectral statistics is influenced by spatial fluctuations (cf section 2), whereas random matrix 
theory is only applicable to ergodic systems. In this paper, we will focus on the description 
of correlations on short scales w < E,. 

In the context of solid state physics, the orthogonal symmetry class corresponds to 
systems with pure potential impurity scattering while the unitary class is appropriate to 
cases where the time reversal invariance is broken, e.g. by a strong external magnetic field. 
At the same time, weak magnetic fields are powerful experimental tools for investigating 
electron interference phenomena like, e.g. weak localization effects, universal conductance 
fluctuations [7] or persistent currents in normal metallic rings [8,9]. For that reason, it is 
of theoretical interest to consider not only the pure symmetry classes, but also the case of 
partly broken time reversal invariance, i.e. the field-driven crossover between orthogonal 
and unitary symmetry. Numerically, the spectral statistics of a disordered metallic ring 
pierced by a magnetic flux was recently investigated by Dupuis and Montambaux [IO]. 
Their results clearly indicate, that random matrix theory is also applicable in the crossover 
region. Within the framework of random matrix theory, systems of intermediate symmetry 
are conveniently represented by Hamiltonians of the type 

H = H, + iaH, a E [O, I ]  (1.1) 

where Hs(HJ are N-dimensional real symmetric (anti-symmetric) statistically independent 
random matrices of the same variance h2/N.  The crossover is driven by the parameter a, 
(Y = O(1) corresponding to the case of pure orthogonal (unitary) symmetry. For the first time, 
random matrix ensembles of this type have been investigated by Pandey and Mehta [ I l l .  
By applying a mathematic1 formalism different from the supersymmetry method used in this 
paper, they were able to calculate the spectral k-level correlation functions in dependence 
on the parameter a without any approximation. In [IO] the two-level correlation function 
obtained by Pandey and Mehta was found also to describe the spectral properties of the 
metallic system if the parameter a is related to the magnetic flux via 
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where E, = f t ~ t ~ D / L ~  denotes the Thouless energy [12], D the diffusion constant, L the 
extension of the system. A the typical level spacing at the Fermi surface and q40 = 27rhc/e 
the unit flux quantum. 

Up to now all analytical results concerning the dependence of the level statistics on a 
weak magnetic field have exclusively been obtained by impurity perturbation theory, cf e.g. 
[I]. For small isolated particles and energy differences much larger than the mean level 
spacing, the perturbative results indeed agree with the predictions of random mahix. A direct 
comparison over the whole range of energies including the domain of strong level repulsion 
w rr A, however, turns out to be impossible. As w + 0. the results obtained in perturbation 
theory show an unphysical divergence which can only be removed by introducing an ad 
hoc cut-off parameter. On the other hand, it is jnst the region of level repulsion where 
the two symmetry classes differ most strongly from each other, i.e. close to the origin, the 
correlation functions of pure symmetry exhibit different power law behaviour and must be 
related to each other by a non-trivial crossover function. Hence, as far as the analysis of 
the symmetry crossover is concerned, the present stage of the theory with restriction to the 
regime o >> A is unsatisfactory and motivates an extension of the non-perturbative analysis 
of ‘[6] to the region of intermediate symmetry. 

In this paper, we study the spectral fluctuations in the crossover region analytically 
within the formalism of the supersymmetric nonlinear n-model [6]. The method will be 
applied to a system of independent electrons moving in a random potential (model 1) and 
to an ensemble of random Hamiltonians of the type (1.1). As for the random matrix case 
we distinguish between a randomly distributed perturbation Ha like in [ 111 (model 2) and a 
fixed antisymmetric realization of Ha (model 3). We find all model systems to be described 
by generating functionals Z(s,, Ai) (i = 1,2,3) of identical strncture. These functionals 
are to a large extent universal, i.e. they depend only on two physical parameters, the mean 
level spacing A; and a ‘symmetry breaking parameter’ si to be discussed below. Due 
to the equality of~the generating functionals, the spectral properties of the model systems 
expressed in terms of the respective parameters Ai and sc coincide quantitatively. This 
coincidence is not restricted to the two-point correlation functions considered in this paper. 
It is straightforward to show that up to an increase in the dimension of the matrix valued 
fields (Q in section 2),  the generating functional appropriate for the calculation of higher 
order correlation functions has the same form as the one considered in this paper, i.e. the 
results obtained in the three different models again have to coincide. The increase in the 
number of integration variables, however, renders the concrete evaluation of these higher 
order functionals more and more complicated. 

For the symmetry breakins parameters s; we obtain 

s, = 4x- (27 model 1 
A 40 

model 2 (1.3) 2 sz = N c ~  

The last form s3 points to the physical meaning of the parameters si as measures of the 
typical sensitivity of energy levels to the time reversal symmetry breaking perturbation. 
As for model 1, it has been shown by Thouless [12], that a typical level at the Fermi 
surface changes by the order of E & ~ / $ O ) ~  if the ring is threaded by a small flux 6. Hence, 
SI is proportional to the flux sensitivity of energy levels in the spectral domain under 
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consideration, measured in units of the mean level spacing. A consideration similar to 
Thouless's original one shows- that this interpretation of the si holds in the random matrix 
case as well: According to second order perturbation theory, the energy E,  corresponding 
to an eigenstate In) of the unperturbed Hamiltonian Hs changes by 

under the influence of &Ha. Like in Thouless's derivation, we assume that the typical 
(i.e. n-averaged RMS) magnitude of the oscillating sum is determined by the contribution of 
adjacent levels IE, - E,,, N A and get 

where we have used the fact that the GOE level spacing at the centre of the Wigner semicircle 
A = xAfN. The bracket denotes the average over the random distribution of €f5. In 
the case of a fixed Ha, this expression is proportional to the parameter .q. In model 2, 
however, where Ha is random, we obtain 

i.e. up to a constant sz. 
The analysis of the crossover region necessitates a complete reparametrization of the 

saddle point manifold central to the evaluation of the nonlinear ff-model, i.e. the coset space 
% UOSP(2,2/4)/UOSP(2/2) x UOSP(2/2) [13]. For that reason, the calculation of the 
two-level correlation function will be described in detail below. Moreover, we hope that 
a detailed presentation of the formalism is of interest for its own sake, as it sheds some 
light on the interplay of the different degrees of freedom in dependence on the symmetry 
and may demonstrate the flexibility of the supersymmetry method in handling problems 
of partly broken symmetry in genera!. The formalism is not restricted to the calculation 
of spectral correlations, but can also be applied to the non-perturbative analysis of various 
other properties of metallic particles in the regime of weak fields. Due to the presence of a 
magnetic field which is neither weak nor strong as far as the symmetries of the system are 
concerned, however, the corresponding calculations will in general be more difficult than 
in the cases of pure orthogonal or unitary symmetry, respectively. 

The paper is organized as follows. In section 2 we represent the two-level energy 
correlation function of a metallic ring in terms of a generating functional. The derivation 
of an analogous expression for the random matrix ensemble is presented in appendix B. 
In section 3 we restrict ourselves to the consideration of the ergodic regime (o < E,) 
and calculate the two-level correlation function. We have tried to present the formalism in 
such a way that it can straightforwardly be applied to the calculation of other two-point 
correlation functions as well. Technical details are deferred to the appendices C and D. We 
conclude in section 4. Appendix A provides a summary of notation and conventions used 
in this paper. 
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2. Derivation of the supermatrix functional 

In this section, we derive the functional integral representation for the energy correlation 
function describing a mesoscopic ring threaded by a flux. The final result of this section, 
(2.23) can be obtained by a few straightforward modifications of more general expressions 
contained in [6]. For pedagogical reasons and in order to introduce some notations required 
in forthcoming sections, we nevertheless outline its derivation here. -For all details we 
refer to [6]. Readers who are familiar with the formalism of the supersymmetric nonlinear 
a-model are invited to skip this section and to tum directly to  section 3. 

Let us consider a weakly disordered quasi one-dimensional mesoscopic ring threaded 
by a static magnetic flux $. The circumference 6 is assumed to be much less than the 
localization length and transverse dimensions are of the order of the elastic mean free path 
1 << L.  We~describe a system of non-interacting electrons moving in the ring by the 
one-particle Hamiltonian 

Here ZX is the unit vector in the tangential direction along the ring and V a random white- 
noise potential defined by the correlator 

h 
(V(Z))V = o  (V(Z)V(Y))V = G S ( Z  - Y) (2.2) 

where the angular brackets denote the ensemble average, U is the average density of states 
(per spin and volume) at the Fermi energy E? and r >> AEF' the elastic scattering time. 
Our aim is to calculate the connected part of the dimensionless density-density correlation 
function (the 2-level.cluster function) 

Y z = A 2 ( p ( E + o / 2 ) p ( E - o o / 2 ) ) v  - 1  (2.3) 

where A =' (uV)-' denotes the mean level spacing at the Fermi energy, V is the system's 
volume and p = tr(S(E - H ) ) .  The function Y, can be expressed by the product of an 
advanced and a retarded Green function according to 

A2 1 
2x2 2 Y2 = -Re((F(w))v) - - (2.4) 

where 

F(w) = tr (2.5) 

and w+ = w + is, 6 positive infinitesimal. As long as o << E Y Ep, the function F does 
not explicitly depend on E [1,6]. 

Starting point of the supersymmetry approach is a representation of the Green functions 
in terms of Gaussian type integrals. Introducing a field of supervectors 

ILWT = (SI(Z), Xl(Z)> &(d, XZ(Z)) (2.6) 
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where S k )  are complex commuting (anti-commuting) variables, we obtain [6] 

F(b) = - 1 (1 d=qt(=)U + h ) ( l + L p ) q ( = ) ) J d y + t ( y ) ( l  -M1+Lg)+W 
16 

=~ (/ dzrlrt(z)P(U. 1 dg $t(y)p(r, B)$(y)) (2.7) * 
where 

(. . .)$ = 1 d[tl.(z)]e-L'"*tl(. . .) 

L[$.tl.t] = i /dx+t (z)A ' /Z  E - - - A - H ( z )  A'/'$(z) (2.8) 

P(u,  B) = i ( l +  A)(l + L E )  

[ :  1 
P(r ,B)  = $(1- A)(1+ L,) 

with a[$] = n,=,,22dReSpdImSp,dx~dx~, LE = diag(1,-1,l.-1) and A = 
diag(l,l,  -1, -1). Note that the matnx k in [6] is equal to -Lg. General definitions 
of the matrices LE, A and the projection operators P are given in appendix A. The kernel 
E - H is to be interpreted as a multiple of the four-dimensional unit matrix. 

In order to arrive at a manageable expression after ensemble-averaging, we manipulate 
the action of the functional (2.8) according to 

U$, @I = $[$, !b+I + U*., $+IT) 

For future reference, we have defined a set of additional indices d = 1 , 2  (GOE-indices) 
by Vd=l = +, qd=Z = $*. As it stands, this transformation may seem to be quite 
artificial. Heuristically, however, $ may be regarded as a sort of a wavefunction, whence 
the transformation $ + $*, H --f HT becomes the analogue of the quantum mechanical 
time reversal transformation [41. Still, the necessity of inlroducing the vector of doubled 
dimensionality, V, can be made more apparent within the random matrix model discussed 
in appendix B (cf e.g. (B9), see also [14,151). The newly defined vector V fulfils the 'time 
reversal' symmetry relation 

V* = C,AV (2.10) 

with an orthogonal matrix C given explicitly in appendix A. The disorder average can now 
easily be cmied out and we arrive at 

(.. .)v = d[$]e-'["]( ... ), s 
(2.11) 
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The next step in the derivation of the nonlinear u-model is a decoupling of those 
contributions to  the^ quartic term Y4 which vary slowly in comparison with the Fermi 
wavelength by means of a Hubbard4tratonovich transformation. A s ,  a result the q- 
integration becomes Gaussian and we obtain [6] 

I FIQJ = dzSTr -Q(z)' - i(lng-')(z, 2) J [? 
(2.12) 

where Q is a slowly varying field of eight-dimensional supermatrices having a similar 
algebraic smcture a s  the dyadic product A'/'YYtA1/z, i.e. 

Qt = K Q K  QT = CTQC. (2.13) 

Definitions of the matrix K and the superbace 'STr' can be found in appendix A. The 
symbol d[ Q] denotes the integration over all independent components of the matrix Q. 
We evaluate the functional integral (2.12) further by means of a saddle point approximation. 
The spatially constant saddle-point matrices Qsp are determined by the stationarity condition 

6 
(2.14) 

The solutions of this equation form the saddle point manifold and can be represented as 

Qsp = ?'A? (2.15) 

where the matrices 'f are defined by symmetry relations resulting from (2.13): 

? = K ' ~ - ' K  .TT = cT'f-Ic. (2.16) 

Since we are concerned with a quasi-one-dimensional ring, the slowly varying fields 
Q(z) do not significantly fluctuate in transverse direction, i.e. there is no diffusion in 
transverse direction. Allowing for small spatial fluctuations in longitudinal direction 
Q ( x )  = ?-'(x)A?(z) around a given constant saddle point QSp and expanding to lowest 
order in the small parameters ILL and or, we obtain the functional 

(. . .)Q = J [ c ~ ~ , r ~ ] e - ~ [ ~ l ~ .  . .) 

F[Q] =~- 8 /dxSTrFD(D,Q(x))' + 2io+AQ(x)] 

(2.17) 
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where D denotes the diffusion constant, S the cross-sectional area of the ring and [ d e ]  is 
the volume element of the saddle point manifold. Note that the functional (2.17) is invariant 
under the gauge transformation 

Q(x) -+ exp ( -iT3-~-x 7;) Q(x)exp ( iz3--x 7;) n . 5 2 .  (2.18) 

Since this transformation is equivalent to @ + @ + n@o/2, our expression is periodic in 
@ 0 / 2  [161. It can also easily be shown that YZ is even in the flux, hence we may restrict 
ourselves to flux values @ E [0, @0/4] in all further considerations. 

In order to elucidate the notion of a quasi-zero-dimensional, ergodic system brought 
up in the introduction, let us briefly outline how the generating functional (2.17) may be 
analysed perturbatively. At the same time, this will reveal the correspondence between 
fluctuations of the field i" on the one hand and the diffusion modes playing a central role in 
the diagrammatic approach on the other hand. One possible parametrization of the matrices 
i" is given by (Cl). The two-dimensional supermatrices r$ appearing in (Cl) are the basic 
degrees of freedom underlying the perturbative evaluation of the generating functional. 
Inserting that parametrization into F[Q], we obtain in a symbolic notation 

(2.19) 

where F('")[t] is an abbreviation f o r a  term of order 2m in the t-fields. Explicitly, the free 
term F(')[t] takes the form 

(2.20) 

where 

n;l(p,,) = RDp: -io+ 

pa = 2IrnjL. (2.21) 

In other words, the free part of the action corresponding to the elementary r-fields contained 
in ?D ( f ~ )  is just the inverse of the diffuson (cooperon)-propagator as it appears e.g. in [I]. 
The functional can now be evaluated perturbatively by expanding the weighting factor 
exp(-F) around the free part in powers of t-fields and performing the integration by means 
of Wick's theorem. This procedure results in the complete series of interacting diffusion 
modes as it can alternatively be obtained by the standard impurity perturbation method. 
Details of a perturbative analysis with emphasis on the effects caused by a weak field can 
be found in [14, 151. 

As a consequence of the isolated ring geometry, the n-summation in F(')[t] extends 
over all integers, including zero. For 

Rir'D ~@ - << 1 
@o 

o<<-= 
LZ 

(2.22) 
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the contribution of  higher modes to the weighting factor e~p(-F(~I[r]) is exponentially small 
in comparison with that of the zero-mode. In this regime, spatial fluctuations corresponding 
to n # 0 become inessential and the system can be regarded as effectively pointlike. For 
w, q5 + 0, the propagators nj=c,o(p. = 0) eventually diverge. This infrared divergence of 
the diagrammatic method necessitates a non-perturbative analysis as it is presented in the 
next section. 

Henceforth, we will restrict ourselves to the consideration of the 'non-perturbative' 
regime defined by (2.22). Retaining only the zero-mode contribution and replacing Q(x) 
by the spatially constant matrix Q in (2.17), we arrive at the final result of this section 

( F ( w ) ) ~ v  = (:y { I  - 4 /[dQIe-FL"STr[P(a, B)(Q - A)lSTr[P(r, B)(Q -A)] 

F[Ql= Fo[Ql+ Fi[Ql (2.23) 
2 xw+ SI 

4A 8 A $0 
Fo[Q] = i--STr(QA) Fj[QI = ---STr([Q.r& SI =4x5 (') 
where sI is the symmetry breaking parameter defined in (1.3) and Q denotes now a single 
Q-matrix specified by the symmetry relations (2.13). 

It is shown in appendix B that the 'free energy' F [ Q ]  of the Q-integral describing a 
single N-dimensional random Hamiltonian of partly broken orthogonal symmetry, H = 
Hs + iorH,, or << 1, is given by 

7cm+ NU2 
4A 8 

F[Q] = i--STr(QA) - --STr([Q, r312) 

which means that the model of independent electrons moving in a random potential and 
the random matrix model exhibit identical statistical properties if we identify the respective 
parameters according to (1.2). 

3. Calculation of the two-level correlation function 

We now turn to the concrete calculation of the probability R ( x )  = Yz(x) + 1 -nS(x) for 
finding two energy levels a distance w = x A / x  apart from each other. Expressed in terms 
of the function F(w)  defined in the previous section, R ( x )  reads 

(3.1) 
112 

R(x)  = 3 Re((F(w))v) + $ - J N ~ )  

where the integral representation for ( F ( w ) ) v  is given by equation (2.23) with 

Q =?-'A?. (3.2) 

In order to perform the integration in (2.23), the matrices ? have to be specified according 
to some concrete parametrization. In oUr case, the presence of the symmetry breaking term 
STr([Q, ~31') suggests to start from the ansatz 

f = fC?D (3.3) 
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where both f, and ?D individually fulfil the symmetry relations (2.16) but additionally 

[?D, 531 = 0 (3.4) 

such that only degrees of freedom associated with the matrix fc appear in STr([Q, r#). 
Standard parametrizations [6, 131 which are not based on the decomposition (3.3) lead 
to a nonlinear mixing between degrees of freedom with different GOE-index d = 1,2. 
As a consequence. the symmetry breaking term takes a very complicated form involving 
almost all independent components of the @matrices [17]. Below we specify a concrete 
parametrization of the Q matrices based on the decomposition (3.3) and apply it to 
calculating the density-density correlation function. The derivation of this parametrization 
as well as the calculation of the associated volume element is deferred to appendices C and 
D. 

Similarly to 161, we represent the matrices ?(j) in a quasi-diagonalized form 

fi  = t ~ ~ ( j ) ~ l ( j ) ~ - ’ ? ~ ~ * ( j ) ~ , ( ~ )  j = C , D  (3.5) 

fj = iSin(8(D)/2) cos(i(D)/2) 

with ‘eigenvalue’ matrices given by 

( COS(((D)/Z) isin(&D)/z)) 

ccs(B(c)/2) isin(&c)/2) x CO 

(3.6) 

The appropriate range of all integration variables like e.g. &(j) and OF( j )  will be determined 
in appendix C and can be read off from (3.16). The matrix CO is defined in appendix A. 
The ‘diagonalizing’ matrices VI ( j )  and V.( j )  are respectively defined by 

l4 ( j )  = diag((v(j)T)-l, ul(j), V U )  (3.7) 

with 

and 

The variables $,,,(j) are anticommuting. Combining (3.2), (3.3) and (3.5), we obtain 

I -1  o v u  Q=uG Vc Qc c D 

vc = VdC) VI (C) 

(/D = v~(D)-’?:v~(D)v,(D) 

(3.10) 
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with 

(3.11) 

It turns out to be more convenient to use 

h ( j )  = cosh(8dj)) h ( j )  = COS(~F(~)) (3.12) 

instead of S,(j) as independent integration variables. In terms of these conventionally 
named ‘eigenvalues’, the symmetry-breaking term takes the simple form 

FiIQl = ~ ~ I ( A B ( C ) ~  - WC)’) (3.13) 

depending exclusively on c-eigenvalues. The energy-dependent term is given by 

FoIQI = -iX[(AB(c)AB(D) - AF(C)AF(D)) -k ( b ( c )  - AF(C))(b(D) 

- AF(D))(~~(c)~z(c) - tT(c)tl(c))/21. (3.14) 

It is not difficult to verify that the Q-matrices parametrized by (3.10) fulfil the symmetry 
relations (2.13). Still, however, the integration regions of the independent variables have 
to be specified in such a way that the newly parametrized Q-matrices faithfully represent 
the whole saddle-point manifold. This is done in appendix C by comparing (3.10) with the 
parametrization used in model I of [6]. Finally, the volume element of the saddle point 
manifold associated with the new parametrization has to be calculated (cf appendix D). As 
a result of all these we obtain 

where 

(3.15) 

and b ( j )  = 0(-1) for j = c(D). Apart from a halved integration interval of the C-fermion 
eigenvalue ~ F ( C ) ,  both dp(c) and dp(D) have the form of GUE-VOlUme elements (cf [6]). 

The measure tenns dp( j )  diverge at A B ( j )  = hF(j) = 1. As a consequence [I81 one 
must not directly apply formula (A9) for the integration over anticommuting variables, i.e., 
terms of lower order in the anticommuting variables carefully have to be taken into account. 
A particular pedagogical discussion of these divergencies and their effect on the integration 
over Q-matrices of unitary symmetry can be found in [19]. Here, we are integrating twice 
over measures of CUE-type and straightforward extension of the results of [19] leads to the 
following prescription for the integration procedure: As a first step, the integrand, which 
we temporarily denote by f. has to be expanded in powers of anticommuting variables 
according to 

f = fm f f04t4(D) 4- f40e4(C) 4- f&* -t ... (3.17) 
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where fw etc are functions of commuting variables and we introduced the abbreviations 
tl(j)t2(j)<:(j)e;(j) =: t4(j) and t4(C)t4(D) =: forthe sake of notational compactness. 
As was shown in [19], only expansion coefficients ficin, ic, io = 0 ,4  lead to non-vanishing 
contributions after integration. A direct application of the integral theorem in [I91 then 
leads to the result 

/"[d&lf = hoa + hw + h40 +ha (3.18) 

where 

hw = fW(PC = 0, PD = 0) 

hC4 = /" d b  (D)fO4(5C '0, ZD) 

Here, zje, 6 is an abbreviation for all commuting variables, i.e., xj = [ O , ( j ) ,  &(j); g = 
B, F). Due to the damping factor (3.13). the terms h a  and hw vanish in the case of strong 
symmetry-breaking fields si >> 1, i.e. 

(3.20) 

Let us now apply these general considerations to the integrand appearing in (2.23). 

g =  - ? q S T r [ P ( u , B ) ( Q - r l ) l S T r [ P ( r , ~ ) ( Q - h ) l  (3.21) 

d~ >i d~~ := ~ J ~ ( A / E , ) ' ~ ~  

and (3.18) reduces to the standard GUE-expression [19]. 

Insertion of the parametrization (3.10) into 

leads to 

g = (1 -hB(C)hB(D))2+!?4(C)(hB(C) -hdC))2(hB(D)2f 1)/2 

+ !?4 (D) (h~(c )k~(D)  - AF(C)~F(D))' - t4(D)(!?;(C)e1(c) - !?;(c)fZ(c)) 
x (~ (WE(JJ)  - ~ F ( C ) ~ F O ) ) ) ( ~ B ( C )  - ~ F ( c ) ) ( ~ E ( D )  - ~ F ( D ) )  

+ &he(c) - h ~ ( c ) ) ~ ( h ~ ( D )  - h~(D))'/2 + (non-contributing terms). 

(3.22) 

The complete integrand is given by f = gexp(-Fo[Ql-Fl[Q]). Combining (3.13), (3.14) 
and (3.22), we arrive at 

foo = (1 - b(C)hB(D))*go 

(3.23) 
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The integrations over angle variables, & ( j ) ,  and D-eigenvdues can easily be carried out 
and we obtain 

hw=O 

hO4 = 2isin(x) exp(ix)/x* 

Adding these terms leads to 

In calculating the real part of  this expression. the positive infinitesimal imaginary part of 
the variable x has to be taken into account. In the vicinity of the origin, (g)p  - Zilx, i.e. 
Re(g)p - i(l/(x+iq) - l/(x-iq)) = 2nNx). As the final result of this section, we obtain 

I 

dhF(C)I\.F(C) Sin(XhF(C))e2~1”(c)C)1. (3.27) 

In the absence of a symmetry-breaking field, ST = 0, the hp(c)-integration can be 
carried out and (3.27) reduces to the GOE-expression (5.42) of [6]. Even in this case, 
however, the present parametrization enables one to calculate R ( x )  more directly. When 
using the parametrization in [6] one has to proceed indirectly by first calculating the x- 
Fourier transform of R(x) 161. 
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4. Conclusion 

In this paper we  investigated two kinds of statistical models in a region of partly broken 
time reversal invariance: a system of independent electrons moving in a mesoscopic ring 
threaded by a flux on the one hand and an ensemble of real symmetric random Hamiltonians 
which are perturbed by a small antisymmetric contribution on the other hand. Our main 
concern was the description of the crossover between pure orthogonal and unitary symmetry, 
respectively. The analysis was based on the formalism of the supersymmetric nonlinear 6- 
model. 

It turned out that both models are described by generating functionals of identical 
structure which means that their statistical properties coincide provided the respective 
physical parameters are identified appropriately. As a quantity of main interest, we 
calculated the two-level correlation function. Our result (3.27) has been obtained 
earlier within the framework of random matrix theory by means of an entirely different 
mathematical formalism [Ill.  Let Us therefore, from our subjective point of view, 
comment on some characteristics of the supersymmetry method. We have derived a novel 
parametrization of the nonlinear u-model which is particularly convenient for problems 
with emphasis on the crossover between two symmetry classes. This parametrization 
allows for a calculation of various statistical observables relating two energy levels to 
each other. Besides the two-level correlation function typical examples are current-level 
1171 or current-current [ZO] correlation functions. These functions can be obtained by 
manipulating the preexponential terms in the generating functional which does not lead to 
a significant change in the computational efforts needed to calculate the integral. In this 
aspect, the nonlinear u-model is more suitable for applications in condensed matter physics 
than random matrix theory where observables like e.g. a current are not even defined. 
Moreover, the Q-matrices can be related to the diffusion modes describing many properties 
of weakly disordered metals. As is most obvious from a perturbative analysis, there is a 
one-to-one correspondence between spatial fluctuations of the fields fc and f~ on the one 
hand and cooperon and diffuson on the other hand. By adding to the zero mode, as it was 
treated in this paper, the perturbatively evaluated contribution of higher modes, one may 
investigate local correlation functions, like e.g. fluctuations in the local electron density. 

On the other hand, an investigation of correlation functions between more than two 
levels necessitates an enlargement of the Q-matrices and it is not clear to us whether the 
resulting integrals can still be worked out. In this aspect, the nonlinear u-model is inferior 
to the standard methods employed in random matrix theory. 

Especially in connection with mesoscopic rings in magnetic fields the role played by 
spin-orbit interactions has attracted much recent .interest [2, 211. An application of the 
present formalism to the symplectic-unitary crossover will be the subject of a forthcoming 
publication. 
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Appendix A. Notation 

Throughout this paper, we frequently refer to results which were derived in [6] and [13]. 
Unfortunately, the notation and conventions used in these references differ considerably. 
In order not to confuse the reader, we summarize the most relevant definitions below. 
Moreover, some auxiliary matrices appearing in the text are defined explicitly in this 
appendix. Unless stated otherwise, the notation is taken from 161. 

The HubbardStratonovich transformation in section 2 introduces an eight-dimensional 
super-mavix Q = [Q$(gg')] where the indices ( p ,  d,  g) have the following meaning: 
components referring to advanced and retarded Green functions, respectively, are labelled 
by indices p. p' = 1,2. Occasionally, we find it convenient to switch to an alternative 
notation according to p = 1 + p = a and p = 2 + p = r .  The indices g,g' = B 
(boson), F (fermion) govern the grading of the matrix elements: Q(BB) and Q(FF) contain 
commuting, Q(BF) and Q(FB) contain anticommuting variables. The introduction of a third 
set of indices d ,  d' = 1,2 is necessitated by the time-reversal invariance of the orthogonal 
symmetry class, as was explained in section 2. 

In this paper, we structure supermatrices by first introducing 4 x 4 blocks referring to 
the p-index: 

Q I I  Qiz  

(Qzi Q z z ) '  

On top of that, each block Qpp,  is decomposed with respect to the d-index: 

where each Q$ is a 2 x 2 supermatrix: 

It should be noted that the block matrices Qppr appearing in [6] are arranged differently. 
In that reference, 

with 

Furthermore, our subscript p is superscript in [6]. 
Let us introduce operators P ( p , d , g )  projecting onto a subspace specified by the 

indices ( p ,  d ,  g), e.g., P(u,  B) denotes a projection operator onto the advanced-boson 
space. By the aid of these operators, the matrices A, 73 and L, breaking the symmetry 
of the 'advanced/retarded'-space, the %Ofi'-space and the graded space, respectively can be 
defined as 

A = m j -  P ( r )  

r3 = P(2)  - P(1) 

L, = P(B) - P(F). ('44) 



3560 A Altland et a1 

The matrix Q fulfils the symmetry relations (2.13) where 

and the transpose AT of a supermatrix A is defined by 

The Gaussian-type integrals underlying the technique of supersymmetric functional 
integration are constructed as follows. Let us first define supervectors: $' = (S,,, x,), 
$t = (S,, xp*) and q' = ($', $+) with complex commuting (anticommuting) components 
S,,(x,,). The GOE-index d distinguishes between @(d = 1) and $*(d = Z), respectively. 
By the aid of these vectors, we can formulate the relevant Gaussian integrals [IS] as 

d[$]exp(-$'A"$) = Sdet[A"] 

d[$] exp(-YtAAY) = (Sdet[(A + CA'C*)/Z])"* (AS) 

where a[$] = n,, 2dRe SpdImSpd$ dxp and A" is a (d = d' = 1)-block of an arbitrary 
(but in the boson-boson block positive definite) supermatrix A. As for the normalization 
of integrals over anticommuting variables, we follow [13]: 

Supertrace STr and super-determinant Sdet are respectively defined by 

Sdet ( A(BB) A(BF))  = det[A(FF) - A(FB)A(BB)-' A(BF)]/det[A(BB)] A(FB) A(FF) 

= exp(STr[lnA]), 

Appendix B. Nonlinear a-model representing a random matrix ensemble 

In this appendix we derive an integral representation for the two-point correlation function 

describing the spectral properties of an ensemble of N-dimensional random matrix 
Hamiltonians (1.1) in the vicinity of E = 0, i.e. close to the centre of the Wigner semicircle. 



Crossover between orthogonal and unitary symmetry 3561 

We resmct ourselves to the consideration of the large N limit, N + M. H,(H,) are real 
symmetric (antisymmetric) Gaussian distributed matrices defined by the moments 

( H s , w v ) H  = ( H a , w u ) H  = 0 

A2 
( H ~ ( ~ ) , . p " H s ( ~ ) . p , " , ) ~  = - ( ~ p p &  4- ( - ) S w d u w , )  N 

L L  U = 1 . . . N (B2) 

where the angular brackets denote the ensemble average. In the extreme cases of restored 
((U = 0) and full broken (a = 1) time reversal invariance, the second moments respectively 
read 

The appearance of a second Kronecker-$ in the first equation reflects the equality of mutually 
time reversed kansition amplitudes (pIHju) in the case of no symmetry breaking. As a 
ranges from, 0 to 1, it induces the crossover to the regime of broken time reversal invariance. 
In the latter case, correlations between time reversed amplitudes are absent. 

As far as the technicalities of the a-model are concerned, the following presentation 
will be self-contained but concise. For a pedagogical introduction to the nonlinear u-model 
with emphasis on random matrix theory, we refer the reader to [13]. In the derivation 
below, we mainly follow the lines of that reference. We begin by representing the function 
F in terms of a functional integral. Introducing a 4N-component vector 

F can be written as 

where 

As will become obvious below, the time reversal symmetry expressed by the first of (B3) 
must explicitly be incorporated in the parametrization of the model in order to arrive at 
manageable expressions after ensemble averaging. As in section 2, this can be done most 
naturally by regarding @ as an analogue of a quantum mechanical wavefunction. We take 
the symmetry into account by principally only considering pairs of mutually time reversed 
amplitudes, qr = (d; @t). Technically, the composite vector q can be introduced by 
rewriting the action L [ @ ,  @?I in (B6) according to 

U@? @+I = $[@, @ + I  +U@. ,  @+IT) 

[ ": 1 1 
= --qtA'" - A +  Hb - iar& A'/*Yr =: L p I .  (B7) 

2 

Replacing @ by q in (B6), we obtain 
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The average over the Gaussian distribution (B2) can easily be carried out and we arrive at 

(F(o, a)),, = d[$.]e-La~['l-L'l*l~tP(a, B)Y *tp(r ,  B ) q  I 
i U+ 

2 2  
Lr)[Y] = --y+-* 

Without introduction of the composite vector Y, we were not able to express the 
'interaction term' Li in terms of the single dyadic product A. Instead the second Kronecker- 
6 in (B3) would lead to more complicated correlations between components of the single 
vector rendering the averaged expression rather clumsy. 

In order to decouple the 'interaction term' by means of a Hubbard-Stratonovich 
transformation, we find it convenient to introduce a matrix 

such that Li = (h2/(4N))STr(i2). After substitution of the matrix A in (B9), the Hubbard- 
Stratonovich transformation results in 

( F ( w , a ) ) ~  =i Id [$ ]d [QJexp  --STr(Q2)- -YtAQY h -La[Y]] E 2 

(B11) x qtp(a, B)Y y t p ( r ,  B)Q 
I a + + a -  a+--- ~~ 

Q=- Q+- ~ 3 Q r 3 .  2 2 

The Gaussian integration over Y can now straightforwardly be carried out. Using (A8) and 
the symmetry properties of Q, (2.13), we arrive at 

I ( F ( w , ( u ) ) ~  = -EId[Q]exp[-$STr(Q2) +-STrln(g(Q)-') N 
4 2 

g(Q)-' = h Q - i-A (- ;; ) 
In order to evaluate the integral in (B12), we employ the saddle point method, i.e. we 

restrict the integration to the set of Q-matrices fulfilling the stationarity condition 

(BW 

In the limit N + w, the integral evaluated in the saddle point approximation asymptotically 
converges to the exact value. In solving the saddle point equation (B13) to leading order in 
N, the parameters w and a can be neglected. We are interested in spectral correlations on a 
short scale w N A. Since at the centre of the semicircle A = xA/N, @/A = O(I/N) does 
not affect the solution to leading order in N. A similar argument holds for the parameter a: 

6 
-($Tr(Q') - STrln(g(Q)-I)) = 0. 
SQ 
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Below (cf (B15)), it will turn out that already small parameter values a = x > 0, 
suffice to break the orthogonal symmetry. In the crossover region to the regime of unitary 
symmetry, a as well as OJ can therefore be treated as small perturbations in the sense of the 
N-expansion. To leading order in N the saddle point equation reads 

Q2=1. ( ~ 1 4 )  

Expanding the exponent in (BIZ) to lowest order in the small parameters o, CY and 
taking the stationarity condition (B14) into account, we findly arrive at 

(F(o, = -- E2 I[dQ]e-FfQISTr[QP(a. B)]STr[QP(r, B)] 
4A2 

= < ( I  A2 - $S[dQle-FfQ1'sTr[P(B)(Q -A)II]ST~[P(B)(Q -A)zz]) (Bl5) 

no+ sz 2 F[Q] = i-STr(QA) - -STr([Q, r#) . s2 = Na . 
4A 8 

Let us finally comment on an altemative way of breaking the symmetry of a real 
random matrix ensemble. Instead of perturbing H, by the random contribution iaH,, we 
may take Ha to be fixed. This modification does not affect the structure of the generating 
functional, i.e. we are again led to a functional with the form (B15). Instead of sz = Nu2, 
however, the basic symmetry breaking parameter now reads sg = tr(H,H:)a2/A2. A 
physical interpretation of this has been given in the introduction. 

Appendix C. Parametrization of the supermatrix Q 

In this appendix we derive the parametrization (3.10) ,for the matrix Q. Let us start from 
the following ansatz for the coset [I31 mahix f = TcTo: 

where 

This representation satisfies the symmetry requirements (2.16), if we impose the condition 

on the 2 x 2 sub-supermatrices appearing in (C2) [14]. We use the convention i = 2 
contain 

all independent variables. Note that the relations (C3) are the same as those relating the 
matrices t12 and 121 appearing in the square-root parametrization of the unitarymodel [I91 

and 2 = 1. From (C4), we know that the sub-matrices ,(f,li, tj;] and {t12, 12 t 2 , )  21 
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to each other. This suggests to represent them analogously in terms of an 'eigenvalue' 
parametrization [I91 

tli = iul(D)-l Sin(e^(D)/2)e'kD'Uz(D) 

t,'; = iul (c)-' ~in(e^(c)/2)e'd(~'v~(c) (C5) 

where the quantities u l ( j ) ,  uZ( j ) ,  & j )  and e^(j) have been defined in (3.8), (3.9) and (3.6). 
respectively. Combining (Cl), (C2) and (C5), we obtain (3.5). After a redefinition of the 
anticommuting variables according to 

the diagonalizing matrices V, ( j )  take the form given in (3.7) and (3.8). In order to 
obtain a paramemzation for the matrix Q. the product 'f = T c ' f ~  has to be substituted in 
(3.2). The resulting expression can be simplified considerably by a few additional variable 
transformations. First, we observe that 

&(C) = b(C) - Cp(D). (C9) 

Further, the first factor on the RHS of (C7) can be absorbed into Vz(C) by shifting the phase 
&c) according to 

(C10) 

Since (C6), (C9) and (CIO) either amount to exchanging or shifting of integration variables, 
the associated Jacobians are unity. As a consequence of these transformations. half of 
the D-anticommuting variables do not appear in the parametrization of Q. This leads to a 
significant simplification of various terms appearing in the integrand (cf (3.14)) and makes it 
possible to calculate the integral manually. Without the aid of the auxiliary transformations, 
we had to perform the integrations by the aid of a computer algebraic system. 

Finally, let us specify the integration domain of the variables appearing in (3.10). This 
is most economically done by relating the new parametrization to the existing one [6]. The 
integration over anticommuting variables is defined in a formal sense without the notion of 
an integration domain. In comparing the parametrizations and determining the integration 
domains, we therefore restrict ourselves to the respective sets of commuting variables and 
ignore all anticommuting variables. The 4 x 4-blocks Qlz already contain all independent 
variables such that it suffices to compare the blocks Qlz defined by (3.10) and by (5.25)- 
model I of [6], respectively. Equating the respective 2 x 2 boson-boson blocks yields 

cosh(&(C)) sinh(&(D)) eXp(-ic$B(D)) = ~ i n h ( 8 ~ )  cosh(&) exp(i(q5 - x)) 

&C) --f 4(C) - VI + Y z .  

sinh(&(c)) cosh(BB(D)) exp(-i@B(c)) = cosh(8,) sinh(&) exp(i(@ + x)) (C11) 
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where the variables appearing on the RHS, 81. O2 E 'E+ = (0, CO) and 4, x E ( 0 , k )  are 
the integration variables used in 161. Hence we are led to the identifications 

implying & ( j )  E 'E+ and @ B ( j )  E (0,2z). Comparing the fermion-fermion block we 
obtain 

~. 

cos($(c)) sin(eF(o)) = sin(Q1-h (Cl31 

sin(eF(c)) = s i n ( 8 ) J i T  (C14) 

and 

@F(O =,-B @F(D) = -a ( C W  

where 8 E (0, n) and we have reparametrized the SU(2) matrix FI in (5.30) of [61 by 

with I ~E (0. 1) and a, ,B E (0,2n). Equation (C15) implies ~ F ( C ) .  &(D) E (0,211). From 
(C13) and (C14) we derive tan(&(D)) = &tan(@), i.e. E ( 0 , ~ ) .  Finally, ('213) 
enforces cos(8F(c)) > 0, i.e. eF(c) E (0, zj2) .  The integration intervals derived here are 
summarized in (3.16). 

Appendix D. Calculation of the measure [dQ] 

In this appendix, we calculate the volume element of the saddle point manifold associated 
with the new parametrization of the Q-matrices. Although the derivation essentially 
amounts to a repeated application of the chain rule, the variety of involved integration 
variables renders it to the most cumbersome part of the calculation. A particular 
detailed and pedagogical derivation of the volume element corresponding to the square- 
root parametrization of Q-matrices of orthogonal symmetry can be found in appendix K of 
[I3]. BeIow we will follow the lines of that reference. 

Our ultimate aim is to calculate the quantity 

where a?' = (S?)f-' and q( j )  = (&( j ) ,  @&), tp(j), $J(j); g = B. F; p = 1,2), j = C, D 
is an abbreviation for all independent integration variables appearing in (3.10). We use the 
convention 
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The decomposition ? = '?(C)?(D) implies 

8 9  = @(C)  + ?(C)8?(D)f(C)-'. (D3) 

As is obvious from the block structure (CZ), the first term S?(C), and thereby Sq(c), do 
not contribute to (Sf');; and (S?);;. This leads to a factorization of the determinant: 

Let us consider each factor separately beginning with S2. Insertion of the 'eigenvalue'- 
representation of the c-variables, (C3, yields 

where we have introduced auxiliary variables, SA and SB. Correspondingly we decompose 
the determinant SI into four factors, $2 = S~LSZ&&, where 

] (D8) 

(D9) 

(f(C)J?(D)f(C)-');;, ('?(C)8?(D)?(C)-')i; 
SA!;, SA:; 

Szl = Sdet 

SZ2 = Sdet 

(DIU 

,923 = Sdet 

S2, = Sdet 
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Two of them, S21 and S,, turn out to be unity. This can be deduced from 

STr [ (~ (c )~~(D)~(C) - ' )~ i ( ? (C)G?(D)? (C) - ' ) ; i ]  = STr[SA#Aif] 

STr[SBiiGBd:] = STr[Sf(D)iiSIi.'(D);i] ( D W  

and the correspondence between the Jacobians associated with matrix-variable transforma- 
tions on the one hand and the supertmce over the product of the corresponding infinitesimal 
increment matrices, i.e. the associated 'line element' on the other hand (cf [6]). In order 
to determine the factor Szz. let us write out the infinitesimal transformation (D6) explicitly 
in terms of matrix elements. Equation @6) does not mix commuting and anticommuting 
variables whence we obtain two independent sets of equations: 

cosh($(c)/2) cos(@F(c)/2) i sinh(BB(c)p) sin(@F(c)/2)e-" Ma= . . ( I Slnh(8~(C)/2) sin($(c)/2)e-" cosb(@B(c)/2) COS(&(C)/~) 

where E = @B(c) -&(c). The super-determinant SZZ is just the quotient of the determinants 
associated with the transformations above and we obtain 

The last factor s24 is the Jacobian corresponding to the transformation from ?(D) to the 
actual integration variables q(D) contained in the matrices t:: and ti:. The latter possess 
unitary symmetry and T(D) is the standard unitary coset matrix expressed in the square-root 
parametrization (cf (Cl)). Hence we conclude that S, is just the GUE volume element (cf 
(5.34) of [6] or (3.12, 3.13) of [19]) 

324 = ( ~ B ( D )  - ~F(DD*. (~15) 
The remaining factor .%I in @4) can be treated similarly as S24 by noting that the 

matrices f ( c )  and ?(D) defined by (3.5) are related to each other by 

which gives 

sf(C);; = Sf(D)::lqcD)=qcc) 

= 8?(D)A:Iq(o)=q(c). ( ~ 1 7 )  

These equations show that SI equals SUJ~(D)=~(C). In other words, SI is the G m  volume 
element corresponding to the c-variables: 

SI =~(hB(C) - hF(C))*. 0 1 8 )  

Combining (DI), (D4), (D14), (D15) and (D18), we finally arrive at (3.15). 
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